
Early Safety Signal Detection 
Brian Smith1, Haijun Ma1 
Jeffrey Zhang1, Amy Xia1, Wenhua Hu2 

1Amgen, Inc. 2Bristol-Myers Squibb 
BASS 2013 



TIME TO CLARIFY 

Philosophy of Safety Signal Detection in Early Drug 
Development 
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Typical FIH Study 

 7 doses of drug and placebo 
 

 Vital signs (SBP, DBP, HR, RR, Temp) measured at 12 
time points 
 

 ECG measured at 15 time points 
 

 Laboratory measurments 2 time points 
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Multiplicity 

 If you did all pairwise comparisons to placebo for all 
endpoints at all times, there could be ~1500 p-values 
generated 
 

 Using a p-value of 0.05 we would expect around 75 
false positives if the compound completely safe 
 

 BTW this is not counting all the potential analyses 
that could come from AEs 
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Why so concerned about false positives? 

 For a safety endpoint, a signal could lead to the end of 
development for the molecule 
 

 Now, if that signal is false… 
 

 The traditional p-value < 0.05 along with 1500 tests 
will not work 
– Contingent on the notion that p-value < 0.05  proves effect 
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A Common Refrain 

 P-values should not be generated for safety data 
 

 Use confidence intervals 
 

 Judge the signal through clinical relevance 
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The Fallacy of The Refrain 

 No matter whether we use p-values or clinical 
judgment to interpret a signal  
 

 False Positives Will Occur 
 

 The problem is that with clinical judgment we are not 
in a position to control the rate of false positives 
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New Refrain 

 We will use a statistical system that does not use p-
values 
 

 Let’s be Bayesian 
 

 Problem – As long as there is some sort of decision 
rule, false positives will occur 
 

 Seems like we are stuck in quick sand 
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A Hint from RA Fisher 

 If one in twenty does not seem high enough odds, we 
may, if we prefer it, draw the line at one in fifty (the 2 
per cent point), or one in a hundred (the 1 per cent 
point). Personally, the writer prefers to set a low 
standard of significance at the 5 per cent point, and 
ignore entirely all results which fail to reach this level. 
A scientific fact should be regarded as experimentally 
established only if a properly designed experiment 
rarely fails to give this level of significance. (RA 
Fisher) 
 

9 BASS 2013 



The Four Pillars of Early Safety Evaluation 

1. Repetition 
 

2. Bayesian Thought 
– Not necessarily Bayesian statistics 

 
– I know Fisher would have hated this bullet!! 

 
3. Clinical Judgment 

 
4. Potential Subject Risk 
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Summary of Philosophy 

 For an early safety signal detector to be used we must 
broaden our and our colleagues understanding of 
– Probability 

 
– Multiplicity 

 
– P-values 

 
– False Positives 

 
– Bayesian Thinking 
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Further Motivation of an Early Development Signal Detector 
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To Kill or not to Kill 

 …the kill decision, especially an early kill decision, 
allows the sponsor to reallocate people and money to 
other development programs promising more benefit. 
– Dan Weiner, Pharsight 

 
 Early Safety Signal Detect can help facilitate a kill 

decision 
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Awareness makes us wiser 

 Imagine a less serious AE (Headaches) 
 
 

 Reduction in Dose 
 
 

 Early Signal Detector would help facilitate 
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Ideal Properties of an Early Detector 

 Accommodates Past Information 
 

 Could update 
 

 Relatively automated 
 

 Has reasonable power 
 

 Signal spotter not signal prover 
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Component 1 - Use Past Data 

 We collect placebo data in a lot of trials (healthy 
subject) 
 

 We should be able to know what the average ALT is 
for healthy subjects 
 

 Let’s use this information 
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Component 2 - Take advantage of 
continuous data 

 Categorical – Is ALT > 3xULN 
 

 Understand Distribution 
– Mean ALT for Treatment 
– Mean ALT for Placebo 
– Variance 

 
 Predict  

– P(ALT > 3xULN) for Treatment 
– P(ALT > 3xULN) for Placebo 
– Relative Risk 
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Component 3 - Take advantage of 
covariates 

 ANCOVA more powerful than ANOVA 
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Component 4 - Use concentration/response 
instead of dose/response 
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Use concentration/response instead of 
dose/response 
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Component 5 - Hierarchical Bayesian 
Models 
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•Each study has estimated means 
 
•Suppose means all very similar   

•Mean of the 5th study can be based on all of the data 
 

•Precision of the estimate will be based on all of the data 
 
•Suppose mean of 5th study very different  

•Mean of 5th study should be based on data from the 5th study   
 

•Precision of the estimate will be based on data from the 5th study 
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First Attempt 
An Example 
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Example of Signal Detection 

 Single dose first in human study (trial I)  
– 58 dosed, 26 placebo 

 Followed by multiple dose study (trial II)  
– 22 dosed, 6 placebo 

 Both trials in healthy subjects.   

 Some high ALTs seen in second trial. 
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Data in two trials 

ULN
ALTALTSTD = 
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Challenges 

 Sample size on current trials may be too small for 
inference 
– Not enough precision to quantify the likelihood of observing the 

abnormal observations 

 Interested in finding a concentration-response relationship 
for signal screening 

 Individual lab observations often affected by baseline 
conditions and often have strong within-subject correlation 
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Use of Historical Placebo Data 
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Historical data 

 25 phase I trials on healthy subjects in placebo group 
between 1997-2007 in Amgen 

 N = 309  

 Common covariates: demographical variables 
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Use of Historical Data 

 Determine the underlying distribution for the response 

 Find important covariates in order to reduce variance 

 Help to interpret results of the current study 
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What factors affect the response ALT? 

 Investigated: gender, race, BMI, age, visit time, weight 
and height  

 Sex, Age, Baseline BMI are significantly related to ALT 
 Consistent to the previous work (Eran Elinav et al, 2005) 
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What factors affect the response ALT? 

 Baseline ALT breaks down significance of Sex, Age, 
Baseline BMI  
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Baseline is the most Important Covariate for 
ALT Response 
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Baseline is the most Important Covariate 
for ALT Response 
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What assumption should we make for 
residuals? 

Kolmogorov-Smirnov Test for normality: 
p<0.01 
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Model We Want: 

 Borrow information from historical placebo data 
 Borrow information between the two trials when 

appropriate 
 Interested in identifying a dose–response relationship 
 Model can handle tail behavior appropriately 
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Incorporation of Historical Data in Bayesian 
Hierarchical Modeling of Extreme Lab Values 
 



Bayesian Hierarchical Modeling 
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Bayesian Hierarchical Modeling 
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Objectives 
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 Bayesian hierarchical models that 
– Model the mean trend 

• Removing baseline effect 
• Using repeated laboratory measurements 
• Incorporating information from historical data 

– Model residuals with more robust distributions that 
allow for heavy tails 

 The model could be used for signal screening and 
event prediction for future studies 

 The model can be updated when new data become 
available 
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Our proposal: Mean Trend for log(ALT) 
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• Yi0: baseline ALT, Ykij: ALT from study k, subject i observation j 
• C26,ij, C27,ij: concentration in two trials (26 is the trial with abnormal 

ALT elevation) 

Parameter Interpretation Prior Distribution 
b1 Coefficient of baseline ALT N(0, 1010) 
b2 effect of concentration in trial 1 N(0, 1010) 

b3 effect of concentration in trial 2 N(0, 1010) 

ƛk Study level random effects N(α0, σ0
2) 

Uki Subject level random effects N(0, σ1
2) 

kijkikijijikij UCbCbyby ελ +++++= ,273,26201 )log()log(

Non-informative hyper priors for α0, σ0
2 and σ1

2 
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Robust Inference with Student-t 
Assumption 

 Replacing the normality assumption of measurement error 
with the t-distribution provides a robust method for outliers 
(Sutradhar and Ali 1986; Lange, Little, and Taylor 1989). 

 For Bayesian hierarchical model, one more step could be 
added in order to use t-distribution with d.f. v. 
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Extreme Value Modeling 
 Extreme value modeling seeks to analyze observed 

extremes and forecast the occurrence and magnitude of 
further extremes  

 The generalized Pareto distribution (GPD) is often used to 
model the tails of another distribution 
– Commonly used in environmental, financial and engineering data 

analysis 
– Southworth and Heffernana (2012) applied GPD for safety 

laboratory data analysis 
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Our proposal: Mixture Model for Residuals 
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• Model residuals as a mixture of truncated t-distribution 
and Generalized Pareto Distribution 

))(,)(,(5.0)(~*5.0)( 00 kijkijkijkijkij ccFFF ξφεεε >=< +=

 Priors:  High uncertainty in estimation of parameters of ζφ, due to small sample size. 
Priors help to share occurrence of extreme value of clinical variables among studies 

• ),(~ 2
0 φσφφ normalk  

• ),(~ 2
0 ξσξξ normalk  
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Results: DIC 

Model of Residuals Dbar + pD=DIC 
M1 Normal distribution -202 + 279 = 77 
M2 T distribution -660 + 293 = -367 
M3 T+GPD Mixture distribution -840 + 316 = -524 
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• Deviance information criterion (DIC) is used for 
model selection 

• Smaller DIC indicates better model fitting 
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Results: Parameter Estimates 
parameter Interpretation Normal T Mixture 

b1 Coefficient of baseline ALT 0.93 
(0.02) 

0.92 
(0.02) 

0.90 
(0.01) 

b2 effect of concentration in first 
trial 

3.623E-6 
(1.27E-5) 

2.751E-6 
(9.035E-6) 

2.357E-6 
(8.681E-6) 

b3 effect of concentration in 
second trial 

0.002 
(0.0003) 

8.978E-4 
(2.801E-4) 

6.37E-4 
(2.554E-4) 

σ0
2 Variability of study random 

effects 
0.003 

(0.002) 
0.002 

(0.001) 
0.002 

(0.001) 

σ1
2 Variability of subject random 

effects 
0.024 

(0.003) 
0.018 

(0.002) 
0.017 

(0.002) 

σz
2 Variability of within subjects 

obs. 
0.053 

(0.002) 
0.019 

(0.001) 
0.020 

(0.001) 

kappa Df for t-distribution 2.66 
(0.21) 

4.9(0.26) 
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Posterior Predictive Probability (%) of 
ALT>3ULN (Trial II) 
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Percentiles  
(BL STD ALT) 

50% (0.40) 95% (0.84) 100% (1.49) 

Percentiles  
(Concentration) 

Nml T T+GPD Nml T T+GPD Nml T T+GPD 

0     (   0) 0 0.08 0 0 0.2 0.3 0.3 0.8 1.8 

25   ( 59) 0 0.04 0.5 0 0.2 2.0 0.5 0.9 6.9 
50   (140)  0 0.04 0.8 0 0.2 2.8 1.6 1.2 8.6 
75   (214) 0 0.08 1.0 0 0.3 3.2 4.1 1.8 9.4 
90   (292) 0 0.08 1.1 0.1 0.4 3.6 9.7 2.6 10.2 
95   (359) 0 0.1 1.2 0.3 0.4 3.8 17.4 3.5 10.5 
100 (466) 0 0.07 1.4 1.5 0.7 4.1 35.8 7.2 11.2 

Nml: normal distribution;   T: t-distribution ;  T+GPD: mixture distribution 

Relative predictive probability at the highest concentration vs placebo for 
subjects with baseline ALT of 1.49 over upper normal limit was 119, 9 and 6 
times respectively using normal, t and mixture distributions. 



Results: Benefit of Using Historical Data 
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Parameter Interpretation T 
 

T (no historical 
data) 

b1 Coefficient of baseline ALT 0.92 
(0.02) 

1.00 
(0.04) 

b2 effect of concentration in trial I 2.751E-6 
(9.0E-6) 

3.052E-6 
(7.4E-6) 

b3 effect of concentration in trial II 0.0001 
(2.8E-4) 

0.001 
(4.2E-4) 

• Precision increase for baseline ALT coefficient 
estimate 

• Point estimate shift and precision increase for trial II 
concentration effect estimate 



47 

Summary of First Example 

 Example used to show a feasible method for early 
safety signal detection  

 We explored a concentration-response relationship  
 Using historical data improved precision of 

population level parameter estimates and provided 
better prediction  

 We made use of existing Amgen healthy subject 
placebo data   
– determine the underlying distribution for the response 
– find important covariates in order to reduce variance 
– help in interpreting results of a current study with more 

precision 
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Discussion 

 Bayesian hierarchical modeling is convenient to 
incorporate historical data and provide prediction 

 Extreme value modeling focuses on tail behavior and 
could be used for abnormal laboratory modeling and 
prediction 

 Plans include  
– Extending the model to other endpoints  
– Simulation study to compare the performance of different 

models 
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Futuristic Thought 

 Could we establish industry wide placebo database 
for such efforts? 
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BACKUP 
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